Biocatalytic gas‐liquid reactions in coiled capillaries
نویسندگان
چکیده
منابع مشابه
Taylor dispersion analysis in coiled capillaries at high flow rates.
Taylor Dispersion Analysis (TDA) has been performed for analytes moving at high flow rates in long, coiled capillaries. A thin injection zone of the analyte is stretched by the flow and final distribution of concentration of the analyte at the end of the capillary has the gaussian shape. The high flow rates in coiled capillary generate vortices. They convectively mix the analyte across the capi...
متن کاملNovel biocatalytic esterification reactions on fatty acids:
Aspergillus terreus lipase has exhibited novel capability of catalyzing esterification reaction between fatty acids (C4-C18) and primary, secondary and tertiary monohydric alcohols. Although, the lipase efficiently catalyzed the esterification of saturated stearic acid (C18:0), it failed to accept the monounsaturated oleic acid (C18:1) as the substrate which is also a C18 acid, but has a double...
متن کاملGuidelines for reporting of biocatalytic reactions.
Enzymes and whole cells are being increasingly applied in research and industry, but the adoption of biocatalysis relies strongly on useful scientific literature. Unfortunately, too many published papers lack essential information needed to reproduce and understand the results. Here, members of the scientific committee of the European Federation of Biotechnology Section on Applied Biocatalysis ...
متن کاملRadioactive Phosphorylation of Alcohols to Monitor Biocatalytic Diels-Alder Reactions
Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using t...
متن کاملBubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions
The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O2 bubbles formed by catalytic decomposition of H2O2, which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemie Ingenieur Technik
سال: 2020
ISSN: 0009-286X,1522-2640
DOI: 10.1002/cite.202055389